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Abstract. This paper explores the problem of manipulating multiple-qubit systems when only single-
qubit operations or two-qubit-interactive operations are permitted. It is demonstrated that if there exist
2 directional control Hamiltonian for each individual qubit, and one interactive Hamiltonian for each pair
of qubits, then multiple qubit systems are open-loop controllable. An important observation of physical
interest is emphasized: when only single-qubit operations or two-qubit-interactive operations are permitted,
only n(n+3)/2 control Hamilton may guarantee open-loop controllability of n qubit systems, and n(n+3)
is, in the restricted sense, also the lower limit on the number of operators needed for controllability. At
last, we demonstrate that an n-quantum-dot system is open-loop controllable even when only single-qubit
operations or two-qubit-interactive operations are permitted.

PACS. 03.65.-w Quantum mechanics – 02.30.Yy Control theory – 02.20.Sv Lie algebras of Lie groups

1 Introduction

Quantum mechanical control theory is being considered
as an essential step in the way from quantum physics to
quantum technology [1] and has been developed ever since
1980s [2–4]. The conditions for controllability of quantum
systems have been discussed by many researchers [2,5–16].
With the development of quantum information processing,
the link between controllability and quantum computation
has also been explored [17]. To authors’ knowledge, the
controllability condition of multiple qubit systems when
only single-qubit operations or two-qubit-interactive op-
erations are permitted, however, has not been explored
yet. This paper investigates this problem and obtains the
corresponding controllability conditions of multiple qubit
systems.

To discuss the Lie algebraic conditions of controlla-
bility of multiple qubit systems, we further reveal some
properties of su(2n). From the view point of physical op-
eration, we study how to generate a particular orthogonal
basis of su(2n), the vectors of which are all tensor product
of identity and Pauli matrices. Two important findings of
physical interest are emphasized and revealed in this pa-
per: (1) the Lie algebraic su(2n) can be generated by only
n(n+3)/2 traceless skew-Hermitian matrices; (2) the spe-
cial orthogonal basis of su(2n) may be generated by at
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least n(n + 3)/2 vectors in the basis. Based on these ob-
servation, we concretely demonstrate controllability con-
ditions of multiple-qubit systems.

It should be mentioned that n(n+3)/2 is not the lower
limit on the number of operators needed for controllabil-
ity of n-qubit systems in general. In fact, it has been rec-
ognized in 1970s [18] that two matrices generate the full
Lie algebra. However, when only single-qubit operations or
two-qubit-interactive operations are permitted, n(n+3)/2
is the lower limit on the number of operators needed for
controllability of n-qubit systems.

The paper is organized as follows. In Section 2, we
review the open-loop controllability notation of quantum
systems. In Sections 3 and 4, we demonstrate some spe-
cial properties of su(2n) and obtain controllability con-
ditions of multiple-qubit systems when only single-qubit
operations or two-qubit-interactive operations are permit-
ted. Furthermore, we demonstrate from the view point of
physical operation that n-quantum-dot systems are con-
trollable. At last, the paper concludes with some com-
ments.

2 Open-loop controllability of quantum
systems

Before discussing controllability of multiple qubit systems,
we first briefly review the concept of open-loop controlla-
bility of multilevel quantum mechanics systems. As for
multilevel quantum mechanical systems, four different no-
tions of controllability of physical interest have already
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been defined and discussed [12]: Operator Controllability
(OC), Pure-State Controllability (PSC), Equivalent State
Controllability (ESC) and Density Matrix Controllability
(DMC). It has been demonstrated that the two notions of
OC (in the special unitary case) and DMC are equivalent
and they are the strongest among the four controllabil-
ity notions, whereas PSC and ESC are themselves equiva-
lent. Therefore, we just recite the definitions of Pure-State
Controllability (PSC) and Density Matrix Controllability
(DMC)

Consider a multilevel quantum dynamical system
described by a finite dimensional bilinear model

|ψ̇(t)〉 =

(
A+

m∑
i=1

ui(t)Bi

)
|ψ(t)〉 (1)

where |ψ(t)〉 is the state vector varying on the complex
sphere SN−1

C , defined as the set of N -ples of complex num-
bers xj + iyj; j = 1, . . . , n, with

∑N
j=1(x

2
j + y2

j ) = 1. The
matrices A,B1, . . . , Bm are in the Lie algebra su(N) of
skew-Hermitian matrices with zero trace of N dimension.

The solution of equation (1) at time t, |ψ(t)〉 with ini-
tial condition |ψ0〉, is given by |ψ(t)〉 = X(t)|ψ(t)〉 where
X(t) is the solution at time t of

Ẋ(t) =

(
A+

m∑
i=1

ui(t)Bi

)
X(t) (2)

with initial condition X(0) = I.
Definition 1. The system (1) is pure-state controllable
if, for every pair of initial and final states |ψ0〉 and |ψ1〉
in SN−1

C , there exist control functions u1, u2, . . . , um and
a time t > 0 such that the solution of (1) at time t, with
initial condition |ψ0〉, is |ψ(t)〉 = |ψ1〉.
Definition 2. The system (1) is density matrix control-
lable if, for each pair of unitarily equivalent density matri-
ces ρ1 and ρ2, there exist control functions u1, u2, . . . , um

and a time t > 0 such that the solution of (2) at time t,
X(t), satisfies X(t)ρ1X

∗(t) = ρ2.
Denote L the Lie algebra generated by

{A,B1, B2, . . . , Bm}. Then we have the following
necessary and sufficient conditions for density matrix
controllability.
Lemma 1 [7]. The system (1) is density matrix control-
lable if and only if L = su(N) or L = u(N).
Lemma 2 [7]. The system (1) is pure state controllable if
and only if L is isomorphic (conjugate) to sp(n/2) or to
su(n), for N even, or to su(N), for N odd.

3 Property of su(2n)

It is well-known that the unitary evolution of n interacting
spin 1

2 particles is described by an element of SU(2n), the
special unitary group of dimension 2n. The corresponding
Lie algebraic su(2n) is a 4n − 1 dimensional space.

First recall that the Pauli spin matrices σx, σy, σz

defined by

σx =
1
2

(
0 1
1 0

)
(3)

σy =
1
2

(
0 −i
i 0

)
(4)

σz =
1
2

(
1 0
0 −1

)
(5)

are the generators of the rotation in the two-dimensional
Hilbert space and a basis for the Lie algebra of traceless
skew-Hermitian matrices su(2). They obey the well-known
relations

[σx, σy] = iσz, [σy, σz ] = iσx, [σz , σx] = iσy. (6)

Obviously, one can choose an orthogonal basis {iBs} for
the Lie algebra su(2n) taking the form [19,20]

Bs = 2q−1
n∏

k=1

(σkα)aks (7)

with α = x, y, or z and

σkα = I2
⊗

. . .
⊗

σα

⊗
. . . I2 (8)

where q is an integer taking values between 1 and n, σα,
the Pauli matrix appears in the above equation (8) only
at the kth position, and I2, the two-dimensional identity
matrix appears everywhere except at the kth position. aks

is 1 in q of the indices and 0 in the remaining.
Denote the Lie algebra generated by

{iσjx, iσjy, 2iσlzσmz ; j = 1, 2, . . . , n; 1 ≤ l < m ≤ n} as
Lz

(n). We can demonstrate the following Lemma.
Lemma 3. Lz

(n) = su(2n).
Proof. Firstly, we can demonstrate that for any j and αj =
x, y, z, iσjαj is in the Lz

(n). This is true because, for any
j, iσjx and iσjx are in Lz

(n), and the following equation is
satisfied

[σjx, σjy ] = iσjz . (9)

Secondly, we can show that 2iσlαl
σmαm is in the Lz

(n)

for any l,m and any αl, αm = x, y, or z. This conclu-
sion can be made from the fact that all 2iσlzσmz with
j = 1, 2, . . . , n; 1 ≤ l < m ≤ n are in Lz

(n) and the follow-
ing equations are satisfied:

[σly , σlzσmz] = iσlxσmz (10)
[σmy , σlzσmz] = iσlzσmx (11)
[σly , σlzσmx] = iσlxσmx (12)
[σlzσmx, σlx] = iσlyσmx (13)
[σlzσmz , σlx] = iσlyσmz (14)

[σlzσmz, σmx] = iσlzσmy (15)
[σlyσmz, σmx] = iσlyσmy (16)
[σlyσmy, σlz ] = iσlxσmy. (17)
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Thirdly, we can demonstrate that if for k ≥ 2, all iBs with
2 ≤ q ≤ k are in the Lz

(n), then all iBs with q = k + 1 are
in the Lz

(n).
In fact, since there exists the following recursive equa-

tion
[σj1αj1

σj2αj2
· · ·σjkβjk

, σjkγjk
σjk+1αjk+1

] (18)

= σj1αj1
σj2αj2

· · · [σjkβjk
, σjkγjk

]σjk+1αjk+1
(19)

for all αj1 , αj2 , · · · , αjk−1 , γjk
, σjk

, βjk
, αjk+1 = x, y, or z

and
±iσjkαjk

= [σjkβjk
, σjkγjk

] (20)

holds for all possible αjk
= x, y,or z, we can conclude that

all possible iBs with q = k + 1 are in the Lz
(n).

Therefore, all iBs with q = 1, 2, . . . , n must be in the
Lz

(n). This completes the proof.
Remark. 1. Denote the Lie algebra generated by
{iσjx, iσjz , 2iσlyσmy; j = 1, 2, . . . , n; 1 ≤ l < m ≤
n} as Ly

(n), and denote the Lie algebra generated by
{iσjy, iσjz , 2iσlxσmx; j = 1, 2, . . . , n; 1 ≤ l < m ≤ n} as
Lx

(n). We can also demonstrate that Ly
(n) = su(2n) and

Lx
(n) = su(2n).

2. Since 2iσlzσmz can be generated by
{iσlx, iσly, iσmx, iσmy, 2i(σlxσmx + σlyσmy + σlzσmz)}
for 1 ≤ l < m ≤ n, we can also conclude
from Lemma 3 that the Lie algebra generated
by {iσjx, iσjy , 2i(σlxσmx + σlyσmy + σlzσmz); j =
1, 2, . . . , n; 1 ≤ l < m ≤ n} is su(2n).

Further more, we can have the following theorem:
Theorem 1. Let α, β, γ = x, y,or z, and α �= β, then
(1) The Lie algebra generated by {iσjα, iσjβ , 2iσlγσmγ ; j =
1, 2, . . . , n; 1 ≤ l < m ≤ n} is su(2n). (2) The Lie algebra
generated by {iσjα, iσjβ , 2i(σlxσmx+σlyσmy+σlzσmz); j =
1, 2, . . . , n; 1 ≤ l < m ≤ n} is su(2n).
Remark. This theorem not only demonstrates that the
Lie algebra su(2n) can be generated by n(n+3)/2 traceless
skew-Hermitian matrices, but also implies that if there
exist 2 directional control Hamiltonian for each individual
qubit, and one interactive Hamiltonian for each pair of
qubits, then multiple qubit systems are density matrix
controllable, and subsequently are pure state controllable.

Another important fact should be pointed out:
Theorem 2. An orthogonal basis {iBs} of the Lie alge-
bra su(2n) can be generated by at least n(n+ 3)/2 tensor
product vectors in the orthogonal basis {iBs}.
Proof. First, we demonstrate that the theorem is true for
n = 1, 2. When n = 1, it is obvious that an orthogonal
basis {iBs} of the Lie algebra su(2) can be generated by
at least 2 tensor product vector in the orthogonal basis.

When n = 2, it is easy to demonstrate that an
orthogonal basis {iBs} of the Lie algebra su(4) can
be generated by at least 5 tensor product vectors in
the orthogonal basis.

Second, we demonstrate that if the theorem is true for
n = k then the theorem is true for n = k + 1.

Suppose that an orthogonal basis {iBs} of the Lie
algebra su(2k) can be generated by at least k(k + 3)/2
tensor product vectors in the orthogonal basis {iBs}.

With k(k + 3)/2 tensor product vectors in the orthog-
onal basis {iBs} in hand, one need at least additional
k + 2 tensor product vectors to generate an orthogo-
nal basis {iBs} of the Lie algebra su(2k+1): 2 vectors
from {iσ(k+1)x, iσ(k+1)y , iσ(k+1)z} and k tensor product
vectors of the form {iσ(k+1)αj

σjβj , j = 1, 2, ..., k} with
αj , βj = x, y or z. That is to say, an orthogonal basis
{iBs} of the Lie algebra su(2k+1) can be generated by
at least (k + 1)(k + 4)/2 tensor product vectors in the
orthogonal basis {iBs}.

So far, we can conclude that the theorem is true for
any n ≥ 1. This completes the proof.
Remark. For many physical systems, the adjustable con-
trol Hamilton is of the form iσiαi or {iσjβjσkγk

} with
i, j, k ∈ N and αi, βj , γk = x, y or z. From Theorem 1
and 2, we can conclude that when only single-qubit oper-
ations or two-qubit-interactive operations are permitted,
n(n+ 3)/2 is the lower limit on the number of operators
needed for controllability of n-qubit systems. In fact, from
the view point of mathematics, one can easily demonstrate
that at least n(n + 3)/2 control Hamilton are needed for
controllability of n-qubit systems when only single-qubit
operations or two-qubit-interactive operations are permit-
ted. One can make this conclusion from the fact that there
should exist two single-qubit operations for each qubit
and one interactive operation for each pair of qubits, i.e.,
n(n− 1)/2 + 2n = n(n+ 3)/2.

4 Open loop controllability of multiple qubit
systems

Now we can demonstrate that some multiple-qubit sys-
tems are open loop controllable.
Result 1. One qubit system given by

|ψ̇(t)〉 = −i (ux(t)σx + uy(t)σy) |ψ(t)〉 (21)

is density matrix controllable (and is also pure state con-
trollable).
Result 2. A two-coupled-qubit system given by

|ψ̇(t)〉 = −i
(
Hd +

4∑
i=1

ui(t)Hi

)
|ψ(t)〉 (22)

where
Hd = 2πλσz

⊗
σz (23)

H1 = 2πσx

⊗
I2 (24)

H2 = 2πσy

⊗
I2 (25)

H3 = 2πI2
⊗

σx (26)

H4 = 2πI2
⊗

σy (27)

is density matrix controllable (and is also pure state con-
trollable).
Remark. It should be mentioned that equation (22) can
be used to describe the system of two heteronuclear spins.
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Similarly, we can obtain the following result about
open loop controllability conditions of n qubit systems.
Result 3. An n-qubit system given by

|ψ̇(t)〉 = −i
(

n−1∑
l=1

n∑
m=l+1

Hlm(t)

+
n∑

i=1

(Hix(t) +Hiy(t))

)
|ψ(t)〉 (28)

with

Hlm(t) = λlm(t)σlzσmz (29)
Hix(t) = uix(t)σix (30)
Hiy(t) = uiy(t)σiy (31)

is density matrix controllable (and is also pure state con-
trollable).

As another concrete physical example, we will show
that an n quantum-dot system is open-loop controllable.

Quantum dots are fabricated from semiconductor ma-
terials, metals, or small molecules [21,22]. They work by
confining electric charge quanta (i.e., spins) in three di-
mensional boxes with electrostatic potentials. The spin of
a charge quantum in a single quantum dot can be manipu-
lated, i.e., single qubit operations, by applying pulsed local
electromagnetic fields, through a scanning-probe tip, for
example. Two-qubit operations can be achieved by spec-
troscopic manipulation or by a purely electrical gating of
the tunneling barrier between neighboring quantum dots.
Usually, an n-quantum-dot system can be described by
Hubbbard model [23]

i�|ψ̇(t)〉 =

⎛
⎝ ∑

1≤l<m≤n

Hlm(t)

+
n∑

j=1

(Hjx(t) +Hjy(t) +Hjz(t))

⎞
⎠ |ψ(t)〉 (32)

where

Hlm(t) = 4Jlm(t)(σlxσmx + σlyσmy + σlzσmz) (33)

Hjx(t) = 2µBgj(t)bjx(t)σjx (34)

Hjy(t) = 2µBgj(t)bjy(t)σjy (35)

Hjz(t) = 2µBgj(t)bjz(t)σjz . (36)

It is easy to conclude that the system (32) is pure state
controllable. In this case, n(n + 5)/2 control Hamilton
are performed on the n-quantum-dot system. However,
from the view point of physical operation, we demonstrate
that n-quantum-dot systems are controllable even when
only single-qubit operations or two-qubit-interactive op-
erations are permitted.

5 Conclusions and discussions

In this paper, we explore the controllability condition of
multiple qubit systems when only single-qubit operations

or two-qubit-interactive operations are permitted. It has
been found that when only single-qubit operations or two-
qubit-interactive operations are permitted, only n(n+3)/2
control Hamilton may guarantee open-loop controllability
of n qubit systems, and n(n+ 3) is also the lower limit on
the number of operators needed for controllability in the
restricted sense. This is in contrast to the fact that only 2
control Hamilton may guarantee open-loop controllability
of N -level quantum systems in some situations (see for
example [13]).
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